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Abstract

The non-linear vibrations of a linear beam with cantilever-Hertizian contact boundary conditions are
investigated. The method of multiple scales is used to analyze this problem in which it is assumed that the
beam remains in contact with the moving surface at all times. One primary result from this analysis is the
amplitude–frequency relation for the various flexural modes. The amplitude–frequency curves exhibit
softening behavior as expected. The amount of softening is shown to depend on the linear contact stiffness
as well as the specific mode. In addition, the associated non-linear normal modes of this system are derived.
The modes include a non-linear modification to the linear, harmonic component as well as a static offset
term and second and third harmonic components.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of moving surfaces that are in contact with each other is important in a number
of scientific and engineering applications. The vibrations of such contacts have been examined
previously by a number of authors [1–3]. The focus in these studies was primarily on a single-
degree-of-freedom (SDOF) system in Hertzian contact with a moving surface. Although Bryant
[2] was interested in the vibrations of a beam in Hertzian contact, for modelling actuator
dynamics, the beam was ultimately simplified to a SDOF system as well. The flexural vibrations of
beams with non-linearities has been examined in a variety of other forms using many different
methods. Non-linear vibrations of linearly elastic beams with non-linear boundary conditions
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have been studied far less using techniques including the harmonic balance method [4], the
method of Shaw and Pierre [5], and the method of multiple scales [6]. Non-linear normal modes
have been observed in many other contexts as well [7].
More recently, the problem of a cantilevered beam in Hertzian contact with a moving surface

has been applied to atomic force microscope (AFM) applications [8,9]. Dynamic AFM methods
rely on the relative motion between the AFM tip and the specimen surface. These techniques are
used to extract quantitative information about the surface stiffness with high resolution [9]. These
techniques utilize the dynamic response of the AFM beam, specifically in terms of the flexural
cantilever modes. A stiff cantilever with high contact force is typically used to confine the tip–
surface forces to the Hertzian contact regime. In these studies, the amplitude of the surface motion
is kept small such that the motion may be analyzed by linearizing the non-linear tip–surface
interaction forces. Such linearization has proven very effective for a variety of materials. As the
surface amplitude increases, the motion eventually becomes non-linear. If the motion is very large,
the non-linear motion is chaotic [10]. Before chaotic motion occurs however, there is a range of
non-linear motion that is stable. It is anticipated that a perturbation approach may be applicable
to describe this motion. It is in this regime that the effects of this softening non-linearity have been
observed experimentally in terms of the shifts of resonant frequencies as a function of amplitude
[8]. The method of harmonic balance was recently used to examine a similar contact AFM
vibration problem [11].
In this article, the non-linear vibrations of an elastic beam with cantilever-Hertzian contact

boundary conditions are examined. It is assumed throughout that the beam remains in contact
with the vibrating surface at all times. In addition, the vibrational amplitude in the beam is
assumed to remain small such that the beam remains in the linear regime. Experimental evidence
suggests that the beam loses contact before non-linear effects in the beam are important [8]. In the
next section, the appropriate boundary value problem is described. The method of multiple scales
is then used to analyze this problem. The primary results from this analysis include the amplitude–
frequency relation for the various flexural modes as well as the non-linear normal modes. Finally,
example results are presented. It is shown that the non-linear behavior, in terms of the non-linear
frequency shift and the change in mode shape, are sensitive to the particular mode and to the
linear contact stiffness. The dependence on the non-linear parameters of the problem is clearly
defined. The theoretical results have the same qualitative features as experimental AFM results. A
similar type of analysis was also recently used to examine the non-linear vibrations of the first
flexural mode when the AFM tip is under the influence of a Lennard-Jones potential [12].

2. Problem description

A uniform, homogeneous beam of constant cross-section is cantilevered at one end as depicted
in Fig. 1. At the end opposite of the cantilever ðx ¼ LÞ; a massless tip with small radius is attached.
The tip is in contact with a surface as shown. The boundary value problem for this system has a
governing equation given by

EIq0000ðx; tÞ þ rA .qðx; tÞ ¼ 0 ð1Þ
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with boundary conditions

qðx; tÞ ¼ 0 at x ¼ 0; q0ðx; tÞ ¼ 0 at x ¼ 0; q00ðx; tÞ ¼ 0 at x ¼ L; ð224Þ

EIq000ðx; tÞ � 3
EI

L3
yðLÞ þ K0½z0 � yðLÞ � qðx; tÞ�3=2 ¼ 0 at x ¼ L: ð5Þ

In Eqs. (1)–(5), qðx; tÞ defines the cantilever position relative to its initial static deflection yðxÞ:
Also, the primes indicate spatial derivatives, while the overdots indicate time derivatives. The
beam is defined by the modulus E; the area moment of the cantilever I ; the volume density r; and
the cross-sectional area A:Here, EI and rA are assumed uniform over the length of the beam. The
boundary conditions given by Eqs. (2)–(4) correspond to conditions of zero displacement and zero
slope at x ¼ 0; and zero moment at x ¼ L:
The boundary condition given by Eq. (5) is the force balance between the shear force in the

beam and the interaction force associated with the tip and the surface. Here, this interaction force
is assumed to be the Hertzian contact condition of a sphere in contact with a plane [13,14]. It is
through this contact that the non-linear behavior of the beam manifests itself. Therefore, the
specific properties of the contact interaction, such as adhesion, friction, and attractive forces, will
have a profound effect on the non-linear behavior of the beam. Regardless of the form of the
non-linear contact, the perturbation analysis formulated here will be similar. The use of Hertzian
theory in this article provides the first step towards the analysis of more complex contact forces. In
Eq. (5), the Hertz coefficient, K0 ¼ 4

3
E� ffiffiffiffi

R
p

; is defined in terms of the reduced elastic modulus,
E�; and the tip radius, R: The reduced modulus is defined by the material properties (elastic
modulus, E; and Poisson’s ratio, n) of the surface and tip. It is defined by

1

E� ¼
1� n2t

Et

þ
1� n2s

Es

; ð6Þ

where the subscripts t and s denote the tip and surface, respectively.
The function yðxÞ in Eq. (5) defines the static deflection of the cantilever due to the surface

offset. A static offset results from changes in the relative position between the beam and the
surface. The end deflection, yðLÞ; will be slightly less than the surface offset, z0: The difference
between the two is the result of deformation. The end deflection is defined by consideration of the
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Fig. 1. Schematic of the problem. The linearly elastic beam is in contact with a surface. Initial contact is made when the

surface offset, z0; is zero. This static offset causes a static beam deflection, yðxÞ: The dynamic motion, wðx; tÞ; is defined
relative to yðxÞ: The contact forces between the tip and sample are assumed Hertzian with no attractive forces.
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static problem. The initial deflection of the cantilever is written in terms of the end deflection as

yðxÞ ¼
1

2
yðLÞ

x

L

� �2
3�

x

L

� �
: ð7Þ

The end deflection is governed by

�3
EI

L3
yðLÞ þ K0ðz0 � yðLÞÞ3=2 ¼ 0; ð8Þ

which defines yðLÞ in terms of the surface offset, z0: Without loss of generality, it is assumed that
z0 is zero when the tip first comes in contact with the surface. This assumption also implies that
the cantilever is horizontal when it first makes contact with the surface. In Eqs. (5) and (8), the
quantity D ¼ z0 � yðLÞ may be identified as the static Hertz deformation. Note that no attractive
forces are assumed present.
The non-linear analysis which follows requires a more amenable form for the non-linear

contact. The contact boundary condition (5) is first rewritten as

EIw000ðx; tÞ � 3
EI

L3
ðz0=D� 1Þ þ K0D1=2½1� wðx; tÞ�3=2 ¼ 0 at x ¼ L; ð9Þ

where w ¼ q=D defines the beam deflection relative to the static Hertz deformation. Note that the
beam remains in contact with the surface as long as wðL; tÞp1: Finally, the term in Eq. (9) with the
3=2 exponent is expanded in a Taylor series expansion about the equilibrium position, wðL; tÞ ¼ 0:
The result is

EIw000 ¼ kw � k1w2 � k2w3; ð10Þ

where the linear and non-linear spring constants are given by

k ¼ 3
2

K0D1=2; k1 ¼ 3
8

K0D1=2; k2 ¼ 1
16

K0D1=2: ð11Þ

The error in this expansion is less than 1% over the range in which the contact is not lost. A
similar type of expansion has been successfully used to model Hertzian contact vibrations in
single-degree of freedom systems [2,3].

3. Method of multiple scales

The non-linear vibration problem described in Section 2 is now solved using the method of
multiple scales. The problem is first recast in dimensionless form. The governing equation is thus
given by

.w þ w0000 ¼ 0 ð12Þ

with boundary conditions

w ¼ w0 ¼ 0 at x ¼ 0; w00 ¼ 0 at x ¼ 1; ð13Þ

w000 � bw � e2c ’w þ eb1w
2 þ e2b2w

3 ¼ e2F cosOt at x ¼ 1; ð14Þ

where e is a dimensionless parameter introduced to order the different scales of the problem. A
viscous damping term (as observed experimentally) and a forcing term (typical of dynamic AFM
experiments) have been added to the final boundary condition. A uniformly valid approximation
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requires the damping, forcing, and the cubic non-linearity to occur at the same level of
perturbation, in this case at e2 [15]. In Eqs. (12)–(14), the position along the beam is measured in
units of L and time is measured in units of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrALÞ=ðEI=L3Þ

p
: The dimensionless linear and

non-linear spring constants are defined by

b ¼
3

2

K0D1=2

EI=L3
; b1 ¼

b
4
; b2 ¼

b
24
: ð15Þ

Thus, b defines the stiffness of the contact relative to the stiffness of the beam. The contact
stiffnesses are determined by D which is related to the static offset through Eq. (8).
The method of multiple scales is applied to this non-linear boundary value problem [6]. We look

for solutions of the form

wðx;T0;T1;T2Þ ¼ w0ðx;T0;T1;T2Þ þ ew1ðx;T0;T1;T2Þ þ? ð16Þ

where T0; T1; and T2 are the different time scales of the problem, Tn ¼ ent: The expansion is
substituted into Eqs. (12)–(14) and like orders of e are collected. This procedure defines the e0

problem as

w0000
0 þ D2

0w0 ¼ 0; ð17Þ

w0 ¼ w0
0 ¼ 0 at x ¼ 0; w00

0 ¼ 0 at x ¼ 1; ð18Þ

w000
0 ¼ bw0 at x ¼ 1: ð19Þ

The e1 problem is given by

w0000
1 þ D2

0w1 ¼ �2D0D1w0; ð20Þ

w1 ¼ w0
1 ¼ 0 at x ¼ 0; w00

1 ¼ 0 at x ¼ 1; ð21Þ

w000
1 ¼ bw1 � b1w

2
0 at x ¼ 1 ð22Þ

and for e2;

w0000
2 þ D2

0w2 ¼ �2D0D1w1 � ðD2
1 þ 2D0D2Þw0; ð23Þ

w2 ¼ w0
2 ¼ 0 at x ¼ 0; w00

2 ¼ 0 at x ¼ 1; ð24Þ

w000
2 ¼ bw2 þ cD0w0 � b1w0w1 � b2w

3
0 � F cosOt at x ¼ 1: ð25Þ

Each of these problems is now solved.

3.1. Order e0 problem

The e0 problem has solution

w0ðx;T0;T1Þ ¼ AmðT1;T2ÞeiomT0W ðxÞ þ cc ð26Þ

for the mth mode where cc denotes the complex conjugate of the previous expression. The modal
subscripts on Am and om are implicit throughout the remainder of the article. The linear mode
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shape W ðxÞ is given by

W ðxÞ ¼ W0ðsin gx � sinh gx � H0ðcos gx � cosh gxÞÞ; ð27Þ

where

W0 ¼
cos gþ cosh g

2ðsin g cosh g� sinh g cos gÞ
; H0 ¼

sin gþ sinh g
cos gþ cosh g

: ð28Þ

The normalization factor W0 is included to ensure that the displacement of the cantilever end
W ð1Þ does not lose contact, such that W ð1Þ ¼ 1:
The values of the dimensionless wave numbers g are determined from the characteristic

equation of the linear problem

g3ðcosh g cos gþ 1Þ � bðsinh g cos g� sin g cosh gÞ ¼ 0: ð29Þ

The wave numbers are related to the natural frequencies through the dispersion relation o2 ¼ g4:

3.2. Order e1 problem

The solution for w0 is necessary for the order e1 problem. The problem for w1 is given by

w0000
1 þ D2

0w1 ¼ �2ioD1Ae
ioT0W ðxÞ þ cc; ð30Þ

w1 ¼ w0
1 ¼ 0 at x ¼ 0; w00

1 ¼ 0 at x ¼ 1 ð31Þ

and the contact boundary condition is given by

w000
1 ¼ bw1 � b1½A

2e2iomT0 þ 2A %A þ %A2e�2iomT0 � at x ¼ 1: ð32Þ

First we seek solutions of the form

w1ðx;T0;T1;T2Þ ¼ g1ðx;T1;T2ÞeioT0 : ð33Þ

The problem for g1 is then

g00001 � o2g1 ¼ �2ioD1AW ðxÞ ð34Þ

with boundary conditions

g1 ¼ g0
1 ¼ 0 at x ¼ 0; g001 ¼ 0 at x ¼ 1; ð35Þ

g001 ¼ bg1 at x ¼ 1: ð36Þ

Because the homogeneous equations for g1 have a non-trivial solution, the non-homogeneous
equations for g1 have a solution only if a solvability condition is satisfied. By virtue of the
characteristic equation defining g; Eq. (29), the solvability condition implies that D1A ¼ 0; or
A ¼ AðT2Þ:
The two other parts of the w1 solution are also found. One solution is of the form

w1 ¼ g2ðxÞe2ioT0 : ð37Þ

Thus, the solution is

g2ðxÞ ¼
b1A

2

2
Gðw2; xÞ; ð38Þ
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where w2 ¼
ffiffiffiffiffiffi
2o

p
and the function Gðw; xÞ is defined as

Gðw;xÞ ¼ �
ðcos wþ cosh wÞðsinh wx � sin wxÞ þ ðcos wx � cosh wxÞðsin wþ sinh wÞ

w3ð1þ cos w cosh wÞ � bðsinh w cos w� sin w cosh wÞ
: ð39Þ

The final part of the w1 solution is related to the static shift due to the non-linearity. Such a
response is expected in systems with quadratic non-linearities [6]. We look for solutions of the
form

w1 ¼ g0ðxÞ: ð40Þ

Substitution into the boundary conditions gives

g0ðxÞ ¼ �
b1A %A

2ð3þ bÞ
x2ðx � 3Þ: ð41Þ

The complete solution for w1 is thus

w1 ¼ �
b1A %A

2ð3þ bÞ
x2ðx � 3Þ þ

b1A
2

2
Gðw2;xÞe

2ioT0 þ cc; ð42Þ

where A is found from the e2 problem. As expected, the w1 solution is proportional to b1 and
quadratic in amplitude.

3.3. Order e2 problem

The solutions obtained for w0 and w1 are necessary for the order e2 problem. The e2 problem is
written in terms of these solutions

w0000
2 þ D2

0w2 ¼ �2ioA0eioT0W ðxÞ; ð43Þ

where A0 ¼ D2A: The appropriate boundary conditions are

w2 ¼ w0
2 ¼ 0 at x ¼ 0; w00

2 ¼ 0 at x ¼ 1; ð44Þ

w000
2 ¼ bw2 þ cioAeioT0 þ b21Gðw2; 1Þ �

2b21
3þ b

� 3b2

� �
A %A2eioT0

þ ðb21Gðw2; 1Þ � b2ÞA
3e3ioT0 þ cc:

Next, we seek solutions of the form

w2ðx;T0;T2Þ ¼ h1ðx;T2ÞeioT0 : ð45Þ

The homogeneous equations for h1 have a non-trivial solution. Thus, the non-homogeneous
equations for h1 require a solvability condition. This condition is

PðgÞioA0 ¼ cioA þ b21 %AA2 Gðw2; 1Þ �
2

3þ b

� �
� 3b2 %AA2; ð46Þ
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where

PðgÞ ¼
3g2ðcos gþ cosh gÞð1þ cos g cosh gÞ � g3sin g sinh gðsin gþ sinh gÞ

g3ðcos gþ cosh gÞ2

þ b
sin g sinh gðcos gþ cosh gÞ þ ð1þ cos g cosh gÞðcosh g� cos gÞ

g3ðcos gþ cosh gÞ2
:

The dependence of Eq. (46) on the particular mode is implicit in the factors of PðgÞ and Gðw2; 1Þ:
The solution for the harmonic component of w2 is then

h1ðxÞ ¼ cioA þ b21 %AA2 Gðw2; 1Þ �
2

3þ b

� �
� 3b2 %AA2

� �
HðxÞ; ð47Þ

where

HðxÞ ¼
1

2g3PðgÞ
ðcos gx � cosh gxÞ

2ð1þ cos g cosh gÞ

ðcos gþ cosh gÞ2
� x

� �
� x

sin gþ sinh g
cos gþ cosh g

ðsin gx þ sinh gxÞ
� �

:

The final part of the solution for w2 is found in a similar manner to that for g2 in the order e1

problem. The solution is thus

h3ðxÞ ¼ �
A3

2
ðb21Gðw2; 1Þ � b2ÞGðw3;xÞ; ð48Þ

with Gðw;xÞ defined in Eq. (39) and w3 ¼
ffiffiffiffiffiffi
3o

p
:

The complete non-linear mode that tends to the linear mode when b1 and b2 tend to zero is then

wðx;T0;T2Þ ¼ ðW ðxÞ þ icoHðxÞÞAeiomT0

þ b21Gðw2; 1Þ �
2b21
3þ b

� 3b2

� �
%AA2HðxÞeioT0 �

b1A %A

2ð3þ bÞ
x2ðx � 3Þ

þ
b1A

2

2
Gðw2; xÞe

2ioT0 �
A3

2
ðb21Gðw2; 1Þ � b2ÞGðw3;xÞ

� �
e3ioT0 þ cc;

where A is defined by Eq. (46).
To solve Eq. (46) we look for solutions of the form A ¼ 1

2
peiq where p and q are real functions

of T2: Substitution into Eq. (46) gives

PðgÞðiop0 � opq0Þ ¼ ciop þ
1

4
b21p

3 Gðw2; 1Þ �
2

3þ b

� �
�

3

4
b2p

3 � 2FeisT2�iq: ð49Þ

Next we define c ¼ sT2 � q such that q0 ¼ c0 � s: Separating Eq. (49) into real and imaginary
parts gives

PðgÞð�opc0 þ opsÞ ¼
b21p

3

4
Gðw2; 1Þ �

2

3þ b

� �
�

3

4
b2p

3 � 2F cosc; ð50Þ

PðgÞop0 ¼ cop � 2F sinc: ð51Þ

Steady state motion occurs when c0 ¼ p0 ¼ 0: Thus,

2F cosc ¼
b21p

3

4
Gðw2; 1Þ �

2

3þ b

� �
�

3

4
b2p

3 � PðgÞops; ð52Þ
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2F sin c ¼ cop: ð53Þ

Eqs. (52) and (53) are squared and added. The result is solved for s giving

s ¼
½b21ðGðw2; 1Þ � 2=ð3þ bÞÞ � 3b2�

4PðgÞo
p27

1

PðgÞo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F2

p2
� o2c2

s
: ð54Þ

The detuning parameter s is related to p in Eq. (54). The phase shift c is then found from

c ¼ tan�1
4co

b21p2ðGðw2; 1Þ � 2=ð3þ bÞÞ � 3b2p2 � 4PðgÞos

 !
; ð55Þ

such that A ¼ 1
2

peisT2�ic: The maximum value for p is

pmax ¼
2F

co
; ð56Þ

which occurs when

s ¼
F

co

� �2 b21ðGðw2; 1Þ � 2=ð3þ bÞÞ � 3b2
PðgÞo

: ð57Þ

In terms of the parameters p and q; the non-linear normal mode reduces to (damping has been
dropped from the mode as discussed by Nayfeh [6])

wðx;T0;T2Þ ¼ W ðxÞp þ b21Gðw2; 1Þ �
2b21
3þ b

� 3b2

� �
HðxÞ

1

4
p3

� �
cos ðoT0 þ qÞ

�
b1x

2ðx � 3Þ
4ð3þ bÞ

p2 þ
b1
4

Gðw2; xÞ p2 cos ð2oT0 þ 2qÞ

� ðb21Gðw2; 1Þ � b2ÞGðw3;xÞ
1

8
p3 cos ð3oT0 þ 3qÞ: ð58Þ

The non-linear amplitude–frequency relation (54), and the non-linear normal mode (58), are the
main results of this derivation. The dependence of the non-linear response on the different modes
is included in the amplitude–frequency relation by the functions P and G:
The various components of the non-linear normal mode include a harmonic component and

static offset as well as second and third harmonic components. The static shift due to the
non-linearity is proportional to b1=ð3þ bÞ and quadratic in amplitude. The spatial dependence of
the second and third harmonics are proportional to Gðw;xÞ; for w ¼ w2 or w ¼ w3; respectively. The
second harmonic is quadratic in amplitude and proportional to b1: The third harmonic is cubic in
amplitude and dependent on b1; b2; and Gðw2; 1Þ: In the next section, example results are presented
using Eqs. (54), (58), and (39).

4. Example results

The non-linear amplitude–frequency behavior for several modes using Eq. (54) is first
presented. It should be noted that the dependence of s on the forcing amplitude F is inverse to
the dependence of s on damping c: Plots for fixed c and increasing F are presented in Figs. 2
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and 3. Similar behavior is observed for fixed F and decreasing c: Fig. 2 is a plot of amplitude
versus s for modes 1 and 2 for b ¼ 300 and c ¼ 0:12 for several values of F : The values of s for
both modes are of the same order over the range of amplitude shown, as large as �0:5: The
response of mode 1 to the higher amplitudes (F ¼ 3; 4; and 6) leads to a response that is larger
than 1. In terms of the quantities defined here, these values would lead to a loss of contact. Mode
2, however, does not have a response larger than 1 for any of the values of forcing used. Similar
results for modes 3 and 4 for b ¼ 1800 and c ¼ 0:08 are shown in Fig. 3.
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Fig. 2. Example results for the primary non-linear response for b ¼ 300 and four values of F ð¼ 1; 2; 3; 4Þ with c ¼ 0:12:
The (a) first and (b) second modes are shown.
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Fig. 3. Example results for the primary non-linear response for b ¼ 500 and four values of F ð¼ 1; 2; 3; 4Þ with c ¼ 0:08:
The (a) third and (b) fourth modes are shown.
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Another important effect in the results is shown in Figs. 4 and 5. In this case, fixed values of F

and c are used with results for two different values of linear stiffness b shown. In Fig. 4,
amplitude–frequency plots are shown for the first and seconds modes for b ¼ 50 and 500 (F ¼ 1;
c ¼ 0:025). The frequency shift for the first mode is larger than the second for b ¼ 50: However,
for b ¼ 500; the second frequency is observed to shift more than the first. In Fig. 5, a comparison
between the first and fourth modes is shown for b ¼ 500 and 2300 (F ¼ 1; c ¼ 0:025). The fourth
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mode is observed to shift much more when b ¼ 2300 in comparison with the first mode. The
behavior of the first mode is very similar for both of these values of b: It was observed that the
modal amplitudes and ranges of s for each mode could be significantly different depending on b:
The linear stiffness is primarily dependent on the static surface offset, defined in Eq. (5) by z0: This
type of modal sensitivity has also been noted for the case of an elastic beam coupled to a moving
surface by a linear spring [16]. Because the non-linearity is localized to a single position of the
beam, the mode shape greatly affects the influence of the non-linearity.
Plots of the harmonic component of the mode shapes are shown in Figs. 6 and 7. In both of

these figures, the linear (Eq. (27)) and non-linear (the term in Eq. (58) that multiplies cosðotÞÞ
components are shown as solid and dashed lines, respectively. In Fig. 6, the amplitude of the first
mode is shown for b ¼ 100: The linear and non-linear components are almost identical for the
portion of the beam closest to the cantilevered end. The difference between the linear and
non-linear in this case is at the end ðx ¼ 1Þ of the beam. The softening effect is clearly shown. For
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large amplitudes, such that the cubic dependency on amplitude is important, the spring is
effectively less stiff. Thus, the beam at x ¼ 1 has a larger amplitude relative to the linear
amplitude. The second mode is shown in Fig. 7 for b ¼ 1900: A similar behavior is observed for
this mode as well. The deviation from linearity is largest at the end with the contact. The deviation
of the non-linear mode shapes from the linear mode shapes follows the trend observed for the
detuning parameter. For a given value of b; a mode may have a small or large non-linear response.
The modal sensitivity to a contact non-linearity is dependent on the linear mode shape.
Finally, plots relevant to the second and third harmonic components of the non-linear

responses are shown in Figs. 8–10. In Fig. 8, Gðw2;xÞ for the first mode is plotted for values of
linear stiffness b ¼ 10; 100, 500, and 1000. Although only a few results may be presented here, the
general trends observed are summarized. As b increases, the overall amplitude of G decreases and
the position of the node moves toward the cantilevered end of the beam. The trends for Gðw2;xÞ
for the second and third modes, as shown in Figs. 9 and 10, respectively, are similar to the plot for
the first mode in that the amplitude decreases for increasing b: The positions of the nodes of G for
these modes are also observed to move toward the cantilevered end of the beam as b increases. In
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addition, it may be observed that an additional node is introduced in these shapes when b is above
a certain value. For example, the first mode results, Fig. 8, have a node between x=L ¼ 0:620:7
for the higher three values of b; but not for b ¼ 10: For the third mode, Fig. 10, the additional
node is only apparent for the highest value of b shown. Thus, each mode has some threshold value
of b for which the function G has an increase in number of nodes.

5. Discussion

The non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions have
been investigated using the method of multiple scales. The non-linear amplitude–frequency
relation was derived and was shown to depend on the mode number and linear contact stiffness.
The linear contact stiffness is primarily dependent on the static offset of the surface. Example
results show the expected softening behavior in terms of the forcing amplitude and damping.
These results may also be used to predict which modes may be most suitable for non-linear
experiments. In particular, it was observed that the first mode lost contact ðp > 1Þ in many cases
before a significant change in frequency was achieved. The derivation of the non-linear normal
modes was also presented. The non-linear modes included terms of a modification to the
harmonic linear mode, a static offset, and second and third harmonic components.
The non-linear analysis showed the amplitude–frequency shift that has been observed

experimentally in the weakly non-linear regime for atomic force microscope experiments [8].
These non-linear effects provide important information about the contact mechanics. The
non-linear behavior of the beam vibrations have been analyzed here using a Hertzian contact
model for the tip–surface interaction. The results showed that the influence of the non-linearity on
each mode is a function of the surface stiffness relative to the stiffness of the cantilever. The modal
sensitivity is also seen to influence the non-linear behavior. Each mode has a different amplitude
near the end of the beam such that the role of the non-linearity changes. Results from other
contact models will provide necessary insight into the expected effects from other factors
important for AFM imaging.
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